

Proposal of the New Rapid Sterility Test

Shimadzu Diagnostics Corporation

5

Background

BactFinder[™]/FungiFinder[™]

Rapid Test Method

High Sensitivity Test Method

Conclusion

5

Background

BactFinder[™]/FungiFinder[™]

Rapid Test Method

High Sensitivity Test Method

Conclusion

About our Products

Kits for quality testing of ATMP and similar products

- PCR kit for mycoplasma detection. Compatible with EP, USP, and JP.
- Tubes come with dried reaction reagents. Produces results in four easy steps.

VirFinder[™] Type-A/Type-B

02

- PCR kit for virus detection testing
- Two versions available for different target viruses

03 NEW

BactFinder[™]/FungiFinder[™]

- PCR kit for rapid microbial detection testing
- Two test methods for different applications

EP 2.6.27 and 5.1.6, and USP <1071> list various detection techniques as alternative rapid microbiological test methods.

We have developed a real-time PCR kit that detects microorganisms by targeting DNA.

Real-time PCR

- High sensitivity and specificity
- Use of commercially available

real-time PCR equipment

Background

Rapid Test Method

High Sensitivity Test Method

Conclusion

Features

✓ PCR kit that detects microbial nucleic acids

- ✓ Clean kit with reduced background nucleic acids
- ✓ Target-specific detection
- ✓ Detects a wide range of environmental and human-

derived microorganisms

BactFinder[™]/FungiFinder[™]

Capacity: Bacteria PCR reagents: 50 tests; Fungi PCR reagents: 50 tests Contains enough 1.5 mL tubes and 8-tube strips for at least 50 tests

✓ Kit includes tubes for PCR reagent preparation and reactions Prevents contamination from other sources

Includes internal control DNA (IC)

Used to verify nucleic acid extraction and monitor for PCR inhibition

BactFinder[™] and FungiFinder[™] Performance Attributes

Expected Samples	Culture supernatant, cell suspensions
Detection Sensitivity	100 CFU/sample
Kit-derived Background Noise	Very little
Specificity	Target-specific detection
Between-device Variation	Verified compatible with three different real-time PCR equipment
Detection Time	About 4 hours
Microorganism Coverage	Six pharmacopoeia microorganisms plus a wide range of environmental and human-derived microorganisms
Operating Conditions	An environment that allows sterile operation

Offers rapid detection of microorganism-derived nucleic acids

SHIMADZU

Rapid Test Method

Developed for reduced microbial background noise in three steps.

Objectives	 Investigate test sensitivity and background noise to verify the suitability of the rapid test method
Sensitivity evaluation with 6 microorganisms	 Tested 1-mL samples of 6 microorganism species at 100 CFU combined with Jurkat cells at 1.0 × 10⁶ cells/mL (N = 8 of each microorganism) Cq detected by real-time PCR deemed a positive result; no Cq detected is a negative result
Background noise evaluation	 Tested 1-mL of PBS combined with Jurkat cells at 1.0 × 10⁶ cells/mL (N = 16) Performed real-time PCR analysis and showed Cq results

Microorganism strain	Result
Aspergillus brasiliensis ATCC 16404	8/8
Candida albicans ATCC 10231	8/8
Bacillus subtilis subsp. spizizenii ATCC 6633	8/8
Clostridium sporogenes ATCC 11437	8/8
Pseudomonas aeruginosa ATCC 9027	8/8
Staphylococcus aureus ATCC 6538	8/8

Shows number of positive results out of tested samples

Demonstrates the rapid test method can reliably detect microorganisms at 100 CFU in samples containing other cells

	BactFi	inder™			FungiF	inder™	
1	35.31	9	N/A	1	N/A	9	N/A
2	N/A	10	N/A	2	N/A	10	N/A
3	34.66	11	N/A	3	N/A	11	N/A
4	35.72	12	37.20	4	N/A	12	N/A
5	N/A	13	N/A	5	N/A	13	N/A
6	N/A	14	N/A	6	N/A	14	N/A
7	N/A	15	N/A	7	N/A	15	N/A
8	N/A	16	36.22	8	N/A	16	N/A

Tables show Cq result for each sample N/A: No Cq detected

Some background noise detected when using BactFinder[™] No background noise detected when using FungiFinder[™]

Rapid Test Method Summary

Rapid Test Method

- A rapid test method that detects microorganisms from 100 CFU in around 4 hours
- ✓ A clean method with relatively little background noise
 - \rightarrow Results affected somewhat by sample type and the testing environment

Likely suitable for real-world applications when a cutoff value is used as the judgment criterion and a suitable testing environment is available

5

Background

BactFinder[™]/FungiFinder[™]

Rapid Test Method

High Sensitivity Test Method

Conclusion

Background to High Sensitivity Test Method

Rapid Test Method

- ✓ Result in around 4 hours \rightarrow Great!
- ✓ 100 CFU sensitivity → Would like higher sensitivities
- ✓ Occasional background noise → Would like no false positive results

We developed a high sensitivity test method with a higher sensitivity and lower risk of false positives compared to the rapid test method

	Rapid Test Method	High Sensitivity Test Method				
Expected Use	Basic sample screening	Product release testing, in-process testing				
	—	Preculture				
Test Method Steps	Preparation and nu	cleic acid extraction				
	Real-time PCR					
Detection Sensitivity	100 CFU	1 CFU				
Testing Time	Around 4 hours	2 – 3 days of culture + 4 hours				
Test Method Benefits	Same-day results	False positives unlikely Results not influenced by dead microorganisms				

We evaluated the performance of the high sensitivity test method by testing the following attributes.

Test items	Definition
Limit of Detection	Lowest concentration of microorganisms that can be detected
Equivalence	Degree of closeness between tests results of rapid and compendial methods
Range of Species	Range of microbial species that can be detected
Specificity	Capacity to not generate false positive results

Method

Preparation \rightarrow Nucleic acid extraction \rightarrow PCR No turbidity in culture Culture Cq - Oh Cq = Δ Cq Judgment criterion

 $\Delta Cq \leq -6$ **Positive** $\Delta Cq > -6$ Negative

TSB and TGC used in the compendial method \checkmark were cultured for 14 days (N = 1 of each)

Check for turbidity after 14 days

Results compared with high sensitivity test method

Results after 48-hour culture of 30 to 0.3 CFU samples

				30 (CFU					3 CFU				0.3 (CFU		
Microorganism strain	Tu	ırbidi	ty		PCR	Positive	Τι	ırbidi	ty	PCR	Positive	Tui	rbidity		PCR	Ро	ositive
Aspergillus brasiliensis ATCC 16404						3/3					3/3						0/3
Candida albicans ATCC 10231						3/3					3/3						2/3
Bacillus subtilis subsp. spizizenii ATCC 6633						3/3					3/3						0/3
Clostridium sporogenes ATCC 11437						3/3					2/3						0/3
Pseudomonas aeruginosa ATCC 9027						3/3					3/3						2/3
Staphylococcus aureus ATCC 6538						3/3					3/3						2/3

/: No PCR detection due to turbidity: Turbidity or ΔCq positive

- ✓ 48-hour preculture gives detection down to 3 CFU
- ✓ Some species also detected to 0.3 CFU
- \checkmark At low microbial levels, ΔCq positive results may be identified earlier than turbid cultures

Equivalence

	30 CFU		3 C	FU	0.3 CFU		
Microorganism strain	High Sensitivity Test Method	compendial method	High Sensitivity Test Method	compendial method	High Sensitivity Test Method	compendial method	
Aspergillus brasiliensis ATCC 16404	3/3	+	3/3	+	0/3	_	
Candida albicans ATCC 10231	3/3	+	3/3	+	2/3	+	
Bacillus subtilis subsp. spizizenii ATCC 6633	3/3	+	3/3	+	0/3	_	
Clostridium sporogenes ATCC 11437	3/3	+	2/3		0/3	_	
Pseudomonas aeruginosa ATCC 9027	3/3	+	3/3	+	2/3		
Staphylococcus aureus ATCC 6538	3/3	+	3/3	+	2/3	+	

+ : Turbidity of TGC or TSB — : No turbidity in TGC or TSB

 Demonstrates the high sensitivity test method offers detection accuracy at least equivalent to the compendial method

✓ More accurate than the compendial method for some samples

Range of Species

The acne bacterium is a high contamination risk microorganism and detection by the compendial method is time-consuming.

We attempted to detect acne bacteria using the high sensitivity test method with a 48-hour and 72-hour preculture.

29 C	. בוו								72h		
	.FU	5 C	FU	0.3 CFU		29 CFU		5 CFU		0.3 CFU	
Furbidity	PCR	Turbidity	PCR	Turbidity	PCR	Turbidity	PCR	Turbidity	PCR	Turbidity	PCR
0/3	3	1/	3	0/	3	3/	3	3/	3	0/	3
						+		+	-	_	-
	urbidity 0/	urbidity PCR	urbidity PCR Turbidity 0/3 1/	urbidity PCR Turbidity PCR	urbidity PCR Turbidity PCR Turbidity	urbidity PCR Turbidity PCR Turbidity PCR	urbidity PCR Turbidity PCR Turbidity PCR Turbidity 0/3 1/3 0/3 3/	urbidity PCR Turbidity PCR Turbidity PCR Turbidity PCR 0/3 1/3 0/3 3/3 +	urbidity PCR Turbidity PCR Turbidity PCR Turbidity PCR Turbidity PCR Turbidity OCR Tur	urbidity PCR Turbidity PCR 0/3 1/3 0/3 3/3 3/3 + +	urbidity PCR Turbidity PCR Tur

: Turbidity or ΔCq positive
 : No turbidity or ΔCq negative

+ : Turbidity of TGC or TSB

- : No turbidity in TGC or TSB

- Almost no samples detected after 48-hour preculture
- ✓ 72-hour preculture gives detection down to 5 CFU
- \checkmark At low microbial levels, ΔCq positive results may be identified earlier than turbid cultures

Microorga	anism strain
Stenotrophomonas maltophilia	Kocuria rhizophila
Bacillus licheniformis	Micrococcus luteus
Brevibacterium casei	Staphylococcus epidermidis
Yersinia enterocolitica	Paenibacillus glucanolyticus
Enterococcus hirae	Corynebacterium jeikeium
Pseudomonas fluoresens	Corynebacterium propinquum
Escherichia coli	Corynebacterium striatum
Salmonella Typhimurium	Corynebacterium resistens
Methylobacterium extorquens	Bacteroides vulgatus
Corynebacterium suicordis	Streptococcus pyogenes ATCC 19615
Rhizopus oryzae	Bacteroides fragilis ATCC 25285
Kocuria rosea	

High sensitivity test method verified to detect microorganisms on the left

Currently in process of gathering more data

Specificity

Test conditions : Aerobic medium / Anaerobic medium + 1.0 \times 10⁶ Jurkat cells Culture time : 48 h

Samples : N = 12

F	BactFi	nder™	Fungi	FungiFinder™				
Sample No.	Turbidity	PCR (ΔCq)	Turbidity	PCR (\DCq)				
1	_	_	_	—				
2	-	—	—	—				
3	—	—	—	—				
4	-	_	_	_				
5	_	_	_	_				
6	_	_	_	_				
7	_	_	_	_				
8	_	_	_	_				
9	-	_	_	_				
10	-	—	—	_				
11	_	_		_				
12	_	_	_	_				
Positive	0/12	0/12	0/12	0/12				

- : Turbidity or Δ Cq negative + : Turbidity or Δ Cq positive

No false positives for bacteria or fungi

High Sensitivity Test Method Summary

High Sensitivity Test Method

- High sensitivity test method that detects living microorganisms from 1 CFU within 48 hours
 - 72 hours required for some microorganisms
- ✓ No background noise and low risk of false positives

Currently in initial phases of validation

5

Background

BactFinder[™]/FungiFinder[™]

Rapid Test Method

High Sensitivity Test Method

Conclusion

BactFinder[™]/FungiFinder[™]

Use one PCR kit and choose between two test methods according to sterility test objectives and applications